Quantum Redirection of Antenna Absorption to Photosynthetic Reaction Centers.
نویسندگان
چکیده
The early steps of photosynthesis involve the photoexcitation of reaction centers (RCs) and light-harvesting (LH) units. Here, we show that the historically overlooked excitonic delocalization across RC and LH pigments results in a redistribution of absorption amplitudes that benefits the absorption cross section of the optical bands associated with the RC of several species. While we prove that this redistribution is robust to the microscopic details of the dephasing between these units in the purple bacterium Rhodospirillum rubrum, we are able to show that the redistribution witnesses a more fragile, but persistent, coherent population dynamics which directs excitations from the LH toward the RC units under incoherent illumination and physiological conditions. Even though the redirection does not seem to affect importantly the overall efficiency in photosynthesis, stochastic optimization allows us to delineate clear guidelines and develop simple analytic expressions in order to amplify the coherent redirection in artificial nanostructures.
منابع مشابه
Time-resolved spectroscopy of the primary photosynthetic processes of membrane-bound reaction centers from an antenna-deficient mutant of Rhodobacter capsulatus
The primary photosynthetic reactions in whole membranes of the antenna-deficient mutant strain U43 (pTXA6-10) of Rhodobacter capsulatus are studied by transient absorption and emission spectroscopy with subpicosecond time resolution. Extensive similarities between the transient absorption data on whole membranes and on isolated reaction centers support the idea that the primary processes in iso...
متن کاملCircular dichroism spectra and the molecular arrangement of bacteriochlorophylls in the reaction centers of photosynthetic bacteria.
Chromatophores, or membrane fragments, prepared from photosynthetic bacteria exhibit a variety of properties which demonstrate that they are able to carry out the quantum conversion steps characteristic of the intact bacterial cells.", 2 The pigment molecules consist of two distinct functional types: an antenna, which includes over 90 per cent of the bacteriochlorophyll molecules, and a smaller...
متن کاملQuantum Effects in Photosynthesis
In photosynthesis, the energy of the Sun is absorbed by the light-harvesting antenna and transferred to the reaction center (RC) within several tens of picoseconds. In the RC the solar energy is converted into electrochemical energy by means of a trans-membrane charge separation. Photosynthetic purple bacteria employ a single reaction center. In contrast, in photosynthesis of plants, algae and ...
متن کاملQuantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2).
Light-harvesting antenna complexes transfer energy from sunlight to photosynthetic reaction centers where charge separation drives cellular metabolism. The process through which pigments transfer excitation energy involves a complex choreography of coherent and incoherent processes mediated by the surrounding protein and solvent environment. The recent discovery of coherent dynamics in photosyn...
متن کاملElectronic energy harvesting multi BODIPY-zinc porphyrin dyads accommodating fullerene as photosynthetic composite of antenna-reaction center.
Efficient electronic energy transfer (EET) in the newly synthesized dyads comprised of zinc porphyrin covalently linked to one, two or four numbers of boron dipyrrin (BDP) entities is investigated. Both steady-state and time-resolved emission as well as transient absorption studies revealed occurrence of efficient singlet-singlet energy transfer from BDP to zinc porphyrin with the time scale ra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry letters
دوره 8 24 شماره
صفحات -
تاریخ انتشار 2017